
Patterns

Really? Patterns?
Lets start somewhere

Why do I care?

 Reduce code duplication

 Apply well known recipes to common issues

 Pattern recognition – maintenance

 Next level of mastery?

Software design pattern is a general reusable solution to a commonly
occurring problem within a given context in software design. It is not a
finished design that can be transformed directly into source code. It is a
description or template for how to solve a problem that can be used in
many different situations. Design patterns are formalized best practices
that the programmer can use to solve common problems.

Singleton

 Singleton pattern should be
used when we must ensure that
only one instance of a class is
created and when the instance
must be available through all
the code. A special care should
be taken in multi-threading
environments when multiple
threads must access the same
resources through the same
singleton object.

 Logger Classes

 Configuration Classes

 Accessing resources in
shared mode

Usage Intent

 Ensure that only one instance of a class is created and provide a
global access point to the object.

Example

class Singleton {
 private static Singleton instance = new Singleton();

 private Singleton() {
 System.out.println("Singleton(): Initializing Instance");
 }

 public static Singleton getInstance() {
 return instance;
 }

 public void doSomething() {
 System.out.println("Singleton does something!");
 }
}

Builder

 Separate the construction of a
complex object from its
representation so that the same
construction process can create
different representations

 Can be used for objects that
contain flat data (html code,
SQL query, X.509 certificate...) -
data that can't be easily edited.
This type of data cannot be
edited step by step and must be
edited at once.

 Build Object/s

 Reduce params in
constructor

Usage Intent

 Helps create complex objects

Example

public class Car {

 public int wheels;

 public String color;

 public Car() {}

 public int getWheels() {

 return wheels;

 }

 public void setWheels(int wheels) {

 this.wheels = wheels;

 }

 public String getColor() {

 return color;

 }

 public void setColor(String color) {

 this.color = color;

 }

}

CarBuilder builder = CarBuilder.create();

Car car = builder.withColor(“blue”).withWheels(4).build();

public class CarBuilder {

 private int wheels;

 private String color;

 public static CarBuilder create() {

 return new CarBuilder();

 }

 public CarBuilder withWheels(int wheels) {

 this.wheels = wheels;

 return this;

 }

 public CarBuilder withColor(String color) {

 this.color = color;

 return this;

 }

 public Car build() {

 Car car = new Car();

 car.setColor(color);

 car.setWheels(wheels);

 return car;

 }

}

Template

 Reduce duplication among
sibling classes that have same
operations

 Let subclasses implement (through
method overriding) behavior that
can vary.

 Avoid duplication in the code: the
general workflow structure is
implemented once in the abstract
class's algorithm, and necessary
variations are implemented in each
of the subclasses.

 Control at what point(s)
subclassing is allowed. As opposed
to a simple polymorphic override,
where the base method would be
entirely rewritten allowing radical
change to the workflow, only the
specific details of the workflow are
allowed to change.

Usage Intent

 Define the skeleton of an algorithm in an operation, deferring
some steps to client subclasses. Let subclasses redefine certain
steps of an algorithm without changing the algorithm's structure.

Example

abstract class Generalization {

 public void findSolution() {

 stepOne();

 stepTwo();

 stepThr();

 stepFor();

 }

 protected void stepOne() {

 System.out.println("Generalization.stepOne");

 }

 abstract protected void stepTwo();

 abstract protected void stepThr();

 protected void stepFor() {

 System.out.println("Generalization.stepFor");

 }

}

class TemplateMethodDemo {

 public static void main(String[] args) {

 Generalization algorithm = new Realization();

 algorithm.findSolution();

 }

}

abstract class Specialization extends Generalization {
 protected void stepThr() {
 step3_1();
 step3_2();
 step3_3();
 }
 protected void step3_1() {
 System.out.println("Specialization.step3_1");
 }
 abstract protected void step3_2();
 protected void step3_3() {
 System.out.println("Specialization.step3_3");
 }
}

class Realization extends Specialization {
 protected void stepTwo() {
 System.out.println("Realization .stepTwo");
 }
 protected void step3_2() {
 System.out.println("Realization .step3_2");
 }
 protected void stepFor() {
 System.out.println("Realization .stepFor");
 super.stepFor();
 }
}

Strategy

 A class that performs validation
on incoming data may use a
strategy pattern to select a
validation algorithm based on
the type of data, the source of
the data, user choice, or other
discriminating factors. These
factors are not known for each
case until run-time, and may
require radically different
validation to be performed.

 Defines a family of
algorithms

 Encapsulates each algorithm

 Makes the algorithms
interchangeable within that
family

Usage Intent

 Enables an algorithm behavior to be selected at runtime

Example

class Customer {

 private List<Double> drinks;

 private BillingStrategy strategy;

 public Customer(BillingStrategy strategy) {

 this.drinks = new ArrayList<Double>();

 this.strategy = strategy;

 }

 public void add(double price, int quantity) {

 drinks.add(strategy.getActPrice(price * quantity));

 }

 public void printBill() {

 double sum = 0;

 for (Double i : drinks) {

 sum += i;

 }

 System.out.println("Total due: " + sum);

 drinks.clear();

 }

 // Set Strategy

 public void setStrategy(BillingStrategy strategy) {

 this.strategy = strategy;

 }

}

interface BillingStrategy {

 public double getActPrice(double rawPrice);

}

class NormalStrategy implements BillingStrategy {

 @Override

 public double getActPrice(double rawPrice) {

 return rawPrice;

 }

}

class HappyHourStrategy implements BillingStrategy {

 @Override

 public double getActPrice(double rawPrice) {

 return rawPrice*0.5;

 }

}

public static void main(String[] args) {
 Customer a = new Customer(new NormalStrategy());
 // Normal billing
 a.add(1.0, 1);
 // Start Happy Hour
 a.setStrategy(new HappyHourStrategy());
 a.add(1.0, 2);
}

Adapter

 It is often used to make
existing classes work with
others without modifying their
source code.

 Convert the interface of a
class into another interface
clients expect

 Wrap an existing class with a
new interface.

 Match an old component to a
new system

Usage Intent

 Helps two incompatible interfaces to work together

Example

class LegacyLine {

 public void draw(int x1, int y1, int x2, int y2) {

 System.out.println("line from (" + x1 + ',' + y1 + ") to (" + x2 + ','

 + y2 + ')');

 }

}

class LegacyLineAdapter {

 public void draw(Coordinate first, Coordinate second) {

 new LegacyLine().draw(first.x, first.y, second.x, second.y);

 }

}

class Coordinate {

 public int x;

 public int y;

}

Factory

 Large object without large
constructor

 Need to create object in
multiple places

 Create object without
exposing the creation logic
to the client and refer to
newly created object using a
common interface.

Usage Intent

 Define an interface for creating an object, but let subclasses
decide which class to instantiate. The Factory method lets a class
defer instantiation it uses to subclasses

Example

interface Dog {

 public void speak ();

}

class Poodle implements Dog {

 public void speak()

 {

 System.out.println("The poodle says \"arf\"");

 }

}

class Rottweiler implements Dog {

 public void speak()

 {

 System.out.println("The Rottweiler says WOOF");

 }

}

class SiberianHusky implements Dog {

 public void speak()

 {

 System.out.println("The husky says what's up?");

 }

}

class DogFactory {

 public static Dog getDog(String criteria)

 {

 if (criteria.equals("small"))

 return new Poodle();

 else if (criteria.equals("big"))

 return new Rottweiler();

 else if (criteria.equals("working"))

 return new SiberianHusky();

 return null;

 }

}

public static void main(String[] args) {

 Dog dog = DogFactory.getDog("small");

 dog.speak();

 dog = DogFactory.getDog("big");

 dog.speak();

 dog = DogFactory.getDog("working");

 dog.speak();

}

Facade

 A segment of the client
community needs a simplified
interface to the overall
functionality of a complex
subsystem.

 Provide a unified interface to
a set of interfaces in a
subsystem. Facade defines a
higher-level interface that
makes the subsystem easier
to use.

 Wrap a complicated
subsystem with a simpler
interface.

Usage Intent

 A facade is an object that provides a simplified interface to a
larger body of code, such as a class library

Example

/* Facade */

class ComputerFacade {

 private CPU processor;

 private Memory ram;

 private HardDrive hd;

 public ComputerFacade() {

 this.processor = new CPU();

 this.ram = new Memory();

 this.hd = new HardDrive();

 }

 public void start() {

 processor.freeze();

 ram.load(B_ADDR, hd.read(B_SEC, SEC_SIZE));

 processor.jump(B_ADDR);

 processor.execute();

 }

}

/* Complex parts */

class CPU {

 public void freeze() { ... }

 public void jump(long position) { ... }

 public void execute() { ... }

}

class Memory {

 public void load(long position, byte[] data) { ... }

}

class HardDrive {

 public byte[] read(long lba, int size) { ... }

}

/* Client */

class You {

 public static void main(String[] args) {

 ComputerFacade computer = new ComputerFacade();

 computer.start();

 }

}

Decorator

 Attach additional
responsibilities to an object
dynamically. Decorators
provide a flexible alternative
to subclassing for extending
functionality.

 You want to add behavior or
state to individual objects at
run-time. Inheritance is not
feasible because it is static
and applies to an entire
class.

Usage Intent

 Add additional responsibilities dynamically to an object

Example

public interface Window {

 public void draw();

 public String getDescription();

}

class SimpleWindow implements Window {

 public void draw() {

 // Draw window

 }

 public String getDescription() {

 return "simple window";

 }

}

class LoggingWindow implements Window {

 Window window;

 public LoggingWindow(Window window){

 this.window = window;

 }

 public void draw(){

 Logger.warn(“Warning”);

 window.draw();

 }

}

Usage:

Window sw = new SimpleWindow();

Sw.draw();

Output:

 Drawings

Window lw = new LoggingWindow(new SimpleWindow());

Lw.draw();

Output:

 Warning

 Drawings

Final thoughts

 Pattern blindness

 Don’t try to use patterns for their own sake

 Start simple, not complex

 Use TDD

 Refactor to a pattern (to remove duplication and
simplifying your code)

 Don’t force yourself to get it right from a first time

Additional resources:

 https://sourcemaking.com/design_patterns

 http://oodesign.com

 https://youtu.be/vNHpsC5ng_E?list=PLF206E906175C7E07

 Growing Object-Oriented Software, Guided by Tests

https://www.amazon.com/Growing-Object-Oriented-Software-Guided-
Tests/dp/0321503627

 Design Patterns: Elements of Reusable Object-Oriented
Software

https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-
Oriented-ebook/dp/B000SEIBB8/ref=mt_kindle?_encoding=UTF8&me=

 Refactoring to Patterns

https://www.amazon.com/Refactoring-Patterns-Addison-Wesley-Signature-
Fowler-ebook/dp/B001TKD4RQ/ref=mt_kindle?_encoding=UTF8&me=

